Not yet answered Marked out of 1.00

Flag question

Cuestion

General mathematics (+)

What is the angle, in radiant, between the two vectors u=(1,1) and $v=(1-\sqrt{3},1+\sqrt{3})$?

Select one:

- \bigcirc a. $\frac{\pi}{6}$
- O b. 0
- \bigcirc C. $\frac{\pi}{3}$
- \bigcirc d. $\frac{\pi}{2}$
- \bigcirc e. $\frac{\pi}{4}$

Question 2

Not yet answered

Marked out of 1.00

Flag question

General mathematics (+)

For $n \in \mathbb{Z}$, we consider $z = (-4\sqrt{3} + 4\mathrm{i})^n$.

 \boldsymbol{z} is a real number if and only if

Select one:

- \bigcirc a. n is a multiple of 3
- \bigcirc b. n is a multiple of 4
- \bigcirc c. n is a multiple of 2
- \bigcirc d. n is a multiple of 6
- e. None of the above

Question $\bf 3$

Not yet answered

Marked out of 1.00

♥ Flag question

Edit question

General mathematics (+)

Consider the function $f: x \mapsto x^4 + 12x^3 + 30x^2 - 100x$

What is the minimum value of f over \mathbb{R} ?

Select one:

- \bigcirc a. $-\infty$
- b. -53
- O c. 0
- O d. 42
- e. None of the above

Question 4

Not yet answered

Marked out of 1.00

Flag question

Edit

General mathematics (+)

Let $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$ be defined by f(x,y) = (3x-2y,4x+3y).

What is the matrix representation of f in the canonical basis of \mathbb{R}^2 ?

- \bigcirc a. $\begin{pmatrix} -3 & 2 \\ 3 & 4 \end{pmatrix}$
- \bigcirc b. $\begin{pmatrix} -2 & 3 \\ 3 & 4 \end{pmatrix}$
- \bigcirc c. $\begin{pmatrix} 4 & 3 \\ 3 & -2 \end{pmatrix}$
- \bigcirc d. $\begin{pmatrix} 3 & -2 \\ 4 & 3 \end{pmatrix}$
- e. None of the above

Not yet

Marked out of

Flag question

🗘 Edit auestion

General mathematics (++)

Consider the polynomial $P(X) = X^3 - \frac{3}{2}X^2 + a$.

For which value of \boldsymbol{a} does it have three distinct roots?

Select one:

- O a. 1
- O b. 1/4
- O c. -1/2
- Od. 1/2
- O e. 0

Question 6

Not yet

Marked out of

♥ Flag question

🗘 Edit

General mathematics (++)

Let $f:\mathbb{R}\mapsto\mathbb{R}$ be a function.

Which of the following assertion is stating exactly that f is continuous on \mathbb{R} ?

Select one:

- $\bigcirc \text{ a. } \forall \epsilon>0, \exists \delta>0, \forall x\in\mathbb{R}, \forall y\in\mathbb{R}, |x-y|<\delta \Rightarrow |f(x)-f(y)|\leq \epsilon$
- $\bigcirc \text{ b. } \forall x \in \mathbb{R}, \forall \epsilon \geq 0, \exists \delta > 0, \forall y \in \mathbb{R}, |x-y| < \delta \Rightarrow |f(x) f(y)| \leq \epsilon$
- \bigcirc c. $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \delta \geq 0, \forall y \in \mathbb{R}, |x y| < \delta \Rightarrow |f(x) f(y)| \leq \epsilon$
- \bigcirc d. $\forall \epsilon \geq 0, \exists \delta > 0, \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, |x-y| < \delta \Rightarrow |f(x) f(y)| \leq \epsilon$
- \bigcirc e. $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0, \forall y \in \mathbb{R}, |x y| < \delta \Rightarrow |f(x) f(y)| \leq \epsilon$

Question 7

Not yet answered Marked out of 1.00

♥ Flag
question

Edit question

General mathematics (++)

Consider a pin code with 8 digits, where each digit is a number between 0 and 9. We know that the first digit is 1, there are exactly 3 digits equal to 0, exactly 1 digit equal to 3, and 2 equal to 5.

How many different pin codes are possible?

Select one:

- a. 420
- O b. 2940
- Od. 7840
- O e. 17640

Question 8

Not yet answered

Marked out of

♥ Flag

🗘 Edit

Analysis (+)

The limit of $f: x \mapsto rac{\mathrm{e}^x - \sin x - \cos x}{2x^2}$ when $x \mapsto 0$ is

- a. -1/2
- O b. 1/4
- c. +∞
- O d. -1/4
- O e. 1/2

ParisTech - test 2024 - Mathematics

Question 9

Not yet answered

Marked out of 1.00

♥ Flag question

Edit question

Analysis (+)

We consider the sequence $S_n = \sum_{k=1}^n \frac{n}{n+k}$.

What is the limit of S_n when n goes to infinity?

Select one:

- a. 0
- O b. 1
- \bigcirc C. $\frac{\pi^2}{6}$
- O d. +∞
- O e. The limit does not exist.

${\tt Question}\,10$

Not yet answered Marked out of 1.00

₹ Flag question

Edit

Analysis (+)

Let f be the function defined by $f:(x,y)\mapsto rac{\mathrm{e}^{y\sqrt{x}}}{y^2}$, for x,y>0 .

Then, for x,y>0, we have

Select one:

$$\bigcirc$$
 a. $abla f(x,y) = rac{1}{2\sqrt{x}y^2} rac{\sqrt{x}y^2 - 2y}{y^4} \mathrm{e}^{2y\sqrt{x}}$

$$\bigcirc$$
 b. $abla f(x,y) = \left(rac{\mathrm{e}^{y\sqrt{x}}}{2\sqrt{x}y}
ight. \left. rac{\sqrt{x}y-2}{y^3} \mathrm{e}^{y\sqrt{x}}
ight)$

$$\bigcirc$$
 c. $abla f(x,y) = \left(rac{\mathrm{e}^{y\sqrt{x}}}{\sqrt{x}y}
ight. \left. rac{\mathrm{e}^{y\sqrt{x}}}{\sqrt{x}y} \mathrm{e}^{y\sqrt{x}}
ight.
ight)$

$$\bigcirc$$
 d. $abla f(x,y) = \left(egin{array}{c} rac{\mathrm{e}^{y\sqrt{x}}}{2\sqrt{x}y^2} \ rac{\sqrt{x}y-2}{y^3}\,\mathrm{e}^{y\sqrt{x}} \end{array}
ight)$

$$\bigcirc$$
 e. $abla f(x,y) = \left(egin{array}{c} rac{\mathrm{e}^{y\sqrt{x}}}{2\sqrt{x}y^2} \ rac{\sqrt{x}y^2 - 2y}{y^4} \, \mathrm{e}^{y\sqrt{x}} \end{array}
ight)$

Question 11

Not yet answered

Marked out of 1.00

♥ Flag
question

Edit

Analysis (++)

Let y be the solution on $[0,+\infty[$ of the differential equation (1+t)y'+ty=0, with y(0)=1. Then

$$\bigcirc$$
 a. $y(1) = 2e$

$$\bigcirc$$
 b. $y(1) = 1/e$

$$\bigcirc$$
 c. $y(1)=2/\mathrm{e}$

$$\bigcirc$$
 d. $y(1) = e$

$$\bigcirc$$
 e. $y(1)=1$

Not yet answered

Marked out of 1.00

♥ Flag
question

Edit

Analysis (++)

We consider the following series:

$$S=\sum_{n=1}^{+\infty}n\mathrm{e}^{-\sqrt{n}}$$
 ,

$$U = \sum_{n=1}^{+\infty} rac{(3n-1)^3}{(n^2+1)^2}$$

$$V = \sum_{n=1}^{+\infty} 1 - \cos(\sqrt{2}/n).$$

Which of the following statements is true?

Select one:

- o a. All series are convergent.
- \bigcirc b. S and V are convergent, U is divergent.
- \bigcirc c. S and U are convergent, V is divergent.
- \bigcirc d. S is convergent, U and V are divergent.
- oe. None of the above.

Question 13

Not yet answered

Marked out of

⟨► Flag
question

Edit question

Analysis (+++)

We consider the following integrals

$$I = \int_{\pi}^{+\infty} rac{\sin(x)}{\sqrt{x}} \mathrm{d}x$$
,

$$J = \int_{\pi}^{+\infty} \frac{\sin^2(x)}{x} \mathrm{d}x$$

$$K = \int_{\pi}^{+\infty} \frac{\sin(x)}{\sqrt{x} + \sin(x)} \, \mathrm{d}x$$

Which of the following statements is true?

Select one:

- \bigcirc a. I is convergent, J and K are divergent.
- \bigcirc b. I and J are convergent, K is divergent.
- \bigcirc c. I and K are convergent, J is divergent.
- O d. They are all convergent.
- o e. None of the above.

Question 14

Not yet answered

Marked out of 1.00

⟨ Flag question

Edit question

Analysis (+++)

For
$$n>0$$
 , we define $I_n=\int_0^1 rac{\mathrm{d}x}{(x^2+1)^n}$.

Select one:

$$\bigcirc$$
 a. $I_{n+1}=I_n+rac{1}{2n}igg(I_n-rac{1}{2^n}igg)$

$$^{\bigcirc}$$
 b. $I_n=I_{n+1}+rac{1}{2n}igg(I_{n+1}-rac{1}{2^n}igg)$

$$\bigcirc$$
 c. $I_n=I_{n+1}-rac{1}{2n}igg(I_{n+1}-rac{1}{2^n}igg)$

$$^{\bigcirc}$$
 d. $I_{n+1}=I_n-rac{1}{2n}igg(I_n-rac{1}{2^n}igg)$

oe. None of the above.

Not yet answered

Marked out of 1.00

♥ Flag
question

Edit question

Algebra (+)

Let a,b,c be real numbers, and let D be the determinant of the matrix $\begin{pmatrix} 1+a & a & a \\ b & 1+b & b \end{pmatrix}$

What is the value of D?

Select one:

- \bigcirc a. 0
- \bigcirc b. 1
- $\bigcirc \text{ c. } a+b+c$
- $\bigcirc \text{ d. } 1+a+b+c$
- $\bigcirc \ {\rm e.} \ 1+2a+2b+2c+ab+bc+ca+abc$

${\tt Question}\,16$

Not yet answered

Marked out of 1.00

⟨ Flag question

question Edit question Algebra (++)

Let $a,b\in\mathbb{R}$. The matrix $M=egin{pmatrix}1&a&0\\0&1&0\\0&0&b\end{pmatrix}$ is diagonalizable in $\mathbb R$ if and only if

Select one:

- \bigcirc a. b
 eq 1 and a=0
- \bigcirc b. b=0
- \odot c. b=1
- \bigcirc d. b
 eq 0 and a = 0
- \bigcirc e. a=0

Question 17

Not yet answered

Marked out of 1.00

♥ Flag question

C Edit

Algebra (++)

Let A be a matrix in $\mathcal{M}_3(\mathbb{R})$, such that $A^3-3A^2+6A-4I=0$.

The determinant of $oldsymbol{A}$ is

- $\bigcirc \ \text{a.} \ \ 4$
- $\bigcirc \ \text{b.} \ \ 0$
- \bigcirc c. $\sqrt{3}$
- \bigcirc d. $-\sqrt{3}\,\mathrm{or}\,1$
- \bigcirc e. 4 or 1

Question 18 Not yet answered

Marked out of 1.00

₹ Flag question

Edit auestion

Algebra (++)

We consider the vector space E generated by the functions from $\mathbb{R} \to \mathbb{R}$, $x \mapsto 1$, $x \mapsto \cos(2x)$, $x \mapsto \cos^2(x)$, and $x \mapsto \sin^2(x)$. Which of the following statements is true?

Select one:

- \bigcirc a. E is a vector space of dimension 2.
- \bigcirc b. E is a vector space of dimension 3.
- \bigcirc c. E is a vector space of dimension 4.
- \bigcirc d. E is a vector space of dimension 1.
- \bigcirc e. E is a vector space of infinite dimension.

Question 18

Not yet answered Marked out of 1.00

♥ Flag
question

Edit guestion

Algebra (++)

We consider the vector space E generated by the functions from $\mathbb{R} \to \mathbb{R}$, $x \mapsto 1$, $x \mapsto \cos(2x)$, $x \mapsto \cos^2(x)$, and $x \mapsto \sin^2(x)$. Which of the following statements is true?

Select one:

- \bigcirc a. E is a vector space of dimension 2.
- \odot b. E is a vector space of dimension 3.
- \odot c. E is a vector space of dimension 4.
- \bigcirc d. E is a vector space of dimension 1.
- \bigcirc e. E is a vector space of infinite dimension.

Question 19

Not yet answered Marked out of 1.00

⟨ Flag question

Edit question

Probability (+)

Let X and Y be two independent random variables. Expectation and variance of X and Y are $\mathbb{E}[X]=2$, $\mathbb{E}[Y]=-1$, $\mathbb{V}[X]=\mathbb{V}[Y]=1$. $\sigma(.)$ is the standard deviation.

Select one

$$\bigcirc$$
 a. $\mathbb{E}[X+Y]=0$ and $\sigma(X+Y)=\sqrt{2}$

$$\bigcirc$$
 b. $\mathbb{E}(X+2Y)=0$ and $\sigma(X+2Y)=\sqrt{5}$

$$\bigcirc$$
 c. $\mathbb{E}(X-2Y)=4$ and $\sigma(X-2Y)=3$

$$\bigcirc$$
 d. $\mathbb{E}[2X]=4$ and $\sigma(-X)=-1$

$$\bigcirc$$
 e. $\mathbb{E}[X-Y]=3$ and $\sigma(X-Y)=0$

Question 20

Not yet answered Marked out of 1.00

₽ Flag

🌣 Edit

Probability (+)

The probability that a day of April (30 days) is rainy is 1/10. A bike rental store earns 100 € on non-rainy days, and loses 10 € on rainy days. An insurance against losses due to rain costs 1 € by day, it gives back 10 € to the store if the day is rainy.

What is the expected gain for April month if the insurance is taken out and if not?

- O a. 2670 € and 2670 €
- O b. 2340 € and 2670 €
- Oc. 2670 € and 2340 €
- d. 3030 € and 3000 €e. 2530 € and 3300 €

Question 21 Not yet answered Marked out of 1.00 F Flag question C Edit question C C 0.841 and 3.421 kg d 0.096 and 3.257 kg e 0.264 and 2.863 kg

Question 22 Probability (++) Not yet answered A padlock has a code of 3 digits randomly chosen among (0,1,2,3,4,5,6,7,8,9). What is the probability that exactly two digits are equal? Marked out of 1.00 ♥ Flag question Select one: O a. 0.1 C Edit question O b. 0.27 O c. 0.5 O d. 0.66 O e. 0.33

Question 23 Not yet answered Marked out of 1.00 F Flag question E clit question C c. 0.16 D d. 0.8 C e. 0.9

Edit question

Question 25 Not yet answered Marked out of 1.00 Fig question Color (question) Color (question) Residuation (question) Res